
A Practical Guide to Marginalization for Nonlinear

Least Squares on Boxplus Manifolds

Evan Levine

February 21, 2023

Abstract

Many state estimation algorithms in robotics rely on nonlinear least squares optimization

procedures that require permanently marginalizing out a subset of variables. This operation

can be time-consuming and error-prone to implement as well as specialized to manifolds,

graph structures, or problem instances. In addition, key details remain ambiguous including

generalizations to manifold state spaces and numerical considerations. This report is intended

to serve as a practical guide for implementers and was inspired by related work in generic

sensor fusion. It presents a description of marginalization for nonlinear least squares on graphs

in the framework of �-manifolds. In software, these abstractions allow users to marginalize

out variables with the Ceres solver in a natural way and experiment with algorithmic choices.

Users implement �/� operators and Jacobians for each primitive manifold and marginalize in

one function call. Numerical experiments demonstrate sensor fusion algorithm development

and compare algorithmic choices. Code is available at github.com/evanlev/ceres-solver.

1 Introduction
In many robotics applications, it is desirable to solve for a subset of variables at reduced compu-

tational cost while eliminating a set of nuisance variables. One example is bundle adjustment,

which can be concerned with estimating only poses or only geometry. In sensor fusion, the se-

quential nature of the problem usually requires removing some variables to keep the problem

size bounded. An example is visual odometry which adds and eliminates variables to maintain a

sliding window of recent states [1, 2, 3, 4, 5].

It is possible to formulate generic sensor fusion algorithms in terms of three abstractions:

manifolds, nonlinear least squares, and graphs. Manifolds are mathematical sets that represent

variables of interest such as pose, directions, and elements of the scene. Their smooth geometry

affords a bidirectional mapping between a local neighborhood on the manifold and Euclidean

space, enabling the applicationof sensor fusion algorithmsbasedon local operations. Thevariables

of interest have dependencies that are represented as a graph. Many practical real-time esimators

perform nonlinear least squares optimization, which balances robustness, efficiency, and accuracy.

[6] defined a broad class of manifolds for sensor fusion called �-manifolds. The definition

formalizes the notion of steps on the manifold in terms of a � and � operator. They further de-

scribe generic nonlinear least squares optimization, the extended Kalman filter, and the unscented

Kalman filter in terms of �-manifolds. [7] extend this to the interacting multiple model filter. [8]

describe Kalman filtering on differentiable manifolds. Simultaneously, optimization-based sensor

1

https://github.com/evanlev/ceres-solver

fusion has gained recent interest due to its performance and flexibility. In otherwork, marginaliza-

tion in nonlinear least squares has been described for Euclidean space or without fully addressing

the manifold structure [9, 10, 11].

Many libraries for bundle adjustment and sensor fusion have been developed. g2o [12] and

Ceres [13] are popular graph optimization libraries that focus on solving bundle adjustment prob-

lems but do not provide genericmarginalization. In the spirit of this report, Ceres offers amanifold

API that allows separating basic manifold operations from the cost function. GTSAM [14] is a

sensor fusion library that uses a factor graph formulation and also provides marginalization with

some limitations on possible numerical implementations. Related work has described marginal-

ization on the Bayes tree [15]. The SymForce library [16] uses a factor graph formulation but focuses

on symbolic computation and code generation. TheManifold ToolKit [9] provides abstractions for

manifolds with an optimizer and unscented Kalman filter, but it does not provide a framework

for generic marginalization in nonlinear least squares problems. These libraries provide a rich

language for users to manipulate problems. They implement advanced optimization techniques

that exploit sparse structure, cache locality, vectorization, and various other techniques to achieve

good performance for prototyping.

A practical challenge motivating this document is that marginalization is highly complex and

error-prone to work out analytically, implement, and rigorously test. Generic implementations are

oneway to address these challenges. Tomeet the performance requirements for real-time systems,

more specialized implementations can be required. Existing descriptions of marginalization in lit-

erature provide limited guidance to practitioners taking either approach. Most importantly, none

explicitly generalize to manifold state spaces. Marginalization has multiple numerical implemen-

tations such as square root and Schur-complement-based marginalization. In Schur-complement-

based marginalization, there are multiple ways of computing the required pseudoinverses includ-

ing eigendecomposition and variants of the Cholesky factorization. It is useful to practitioners to

have an implementation that allows exploring tradeoffs in these algorithmic choices. A common

mathematical description is also useful as guidance for alternative implementations.

Our aim is to provide a detailed, explicit, and general description of marginalization with a

powerful implementation that follows the math. Building on [6], we encapsulate the manifold

structure using the � and � operators. We describe numerical implementations based on square-

root and Schur-complement-based marginalization in a common framework. We elaborate on

implementation details, including a novel use for modified Cholesky factorizations. We make

available a public implementation that extends the Ceres library with generic marginalization,

only requiring one additional manifold operation to be implemented. Experiments demonstrate

its flexibility and ease of use.

2 Preliminaries

2.1 �-manifolds
We briefly present some preliminaries related to �-manifolds. For further details, see [6]. Mani-

folds are mathematical sets that have smooth geometry. The central concept of a �manifold is the

� and � operators, which define a way to take local steps on the manifold. For a manifoldℳ ⊂ RB
of dimension =, the operators are

� :ℳ × R= →ℳ (1)

� :ℳ ×ℳ → R= . (2)

2

These operators generalize the familiar addition and subtraction operators and satisfy four prop-

erties enumerated in [6]. While � is differentiable on the manifold, it need not be continuous in

its left operand.

All objects are representable in software in terms of floating-point numbers. A key feature

is that the implementations of �-manifolds can be opaque to the algorithm. From a software

perspective, such a separation of concerns has advantages for implementation and testing.

2.2 Nonlinear least squares on manifolds
Consider the constrained optimization problem

min

G
�(G) (3)

subject to G8 ∈ ℳ8 , 8 = 1, . . . , =, (4)

where G consists of variables {G8}...,=8=1
andℳ8 is a �-manifold.

In nonlinear least squares, the objective takes the form

�(G) = 1

2

∑
8

‖ 58(G81 , . . . , G8:)‖2, (5)

where 58(·), called the residual function, depends on the parameter blocks G81 , . . . , G8: . Robust loss

functions and constraints can be included, and this topic is revisited in Section 4.3.

We consider nonlinear least squares solvers that express each variable G8 in local coordinates

as Ğ8 � �8 , iteratively minimizing the following objective with respect to all �8 simultaneously:

1

2

∑
8

‖ 58(Ğ81 � �81 , . . . , Ğ8: � �8:)‖2. (6)

Each variablemay belong to one of a small set of primitivemanifolds (e.g. ($(3),R3
) or a Cartesian

product of manifolds. At a minimum, the � and � operators must be implemented for each

primitive manifold as well as the Jacobian of �with respect to �. Note that [8] associate additional

operators to � for the same manifold, which can offer some convenience in implementation to the

user in some cases for Kalman filtering. We base our approach on a single� operator permanifold,

which is not restrictive for modeling problems and follows the formulation of some widely-used

nonlinear least squares solvers.

Factor graphs formalize the inter-variable dependencies expressed by Equation 6. For details,

see [17].

3 Generic Marginalization

3.1 General setup
We aim to solve for a block of variables excluding the variables to be eliminated, which we denote

G< ∈ R< . In loose terms, elimination corresponds to approximating the marginal that would be

defined by “integrating out" G< in the associated density or minimizing it out in Equation 5. We

can partition the variables into a block G< , the variables related to them by residual functions (their

Markov blanket), denoted by the block G1 ∈ R1 , and the remaining variables GA ∈ R1 :

G = (G< , G1 , GA). (7)

3

Let %G< be the index set for the residual functions involving only G< . We can write the objective

as a decomposition into two

�(G) = �1<(G1 , G<) + �1A(G1 , GA), (8)

where

�1<(G1 , G<) =
1

2

∑
8∈%G<

‖ 58(G1 , G<)‖2 (9)

�1A(G1 , GA) =
1

2

∑
8∉%G<

‖ 58(G1 , GA)‖2, (10)

G1 , G< , and GA belong to a product of �-manifolds, which are, naturally, �-manifolds as proven

in [6]. Since G< lies on a �-manifold and the � operator is surjective, we can make a change of

variables from G< to the tangent-space vector �< ∈ R< at the point Ğ< :

G< = Ğ< � �< (11)

Accordingly, the objective can be rewritten

�(�< , G1 , GA) = 21<(G1 , �<) + �1A(G1 , GA), (12)

where

21<(G1 , �<) = �1<(G1 , Ğ< � �<) (13)

Assume that the residual functions are differentiable at the linearization point Ğ< , Ğ1 . This

allows making the following linear approximation for the first term in Equation 8.

21<(G1 , �<) =
1

2

∑
8∈%G<

‖ 58(G1 , Ğ< � �<)‖2 (14)

≈ 1

2

∑
8∈%G<

‖ 58(Ğ1 , Ğ<) + �1,8(G1 � Ğ1)

+ �<,8�< ‖2, (15)

, 2̃1<(G1 , �<), (16)

where �< ∈ R< is an increment in the tangent space G< = Ğ< � �< and G1 respectively and the

Jacobians are

�<,8 ,
% 58
%G1
(Ğ1 , Ğ<)

%G1
%�1
(Ğ1) (17)

�1,8 ,
% 58
%G<
(Ğ1 , Ğ<)

%G<
%�<
(Ğ<) (18)

(19)

Define the stacked Jacobians and residuals

�< ,
[
�)
<,1

�)
<,2

. . . �)
<,|%G< |

])
(20)

�1 ,
[
�)
1,1

�)
1,2

. . . �)
1,|%G< |

])
(21)

5 ,
[
51(Ğ1 , Ğ<)) . . . 5|%G< |(Ğ1 , Ğ<))

])
. (22)

4

3.2 Marginalization via the Schur complement
Next, we derive the cost after marginalization via Schur complement. 2̃1< can be rewritten as

2̃1<(G1 , �<) =
1

2

[
G1 � Ğ1
�<

]) [
Λ11 Λ)

<1
Λ<1 Λ<<

] [
G1 � Ğ1
�<

]
+ 1

2

‖ 5 ‖2 +
[
61
6<

]) [
G1 � Ğ1
�<

]
, (23)

where

6< = �
)
< 5 (24)

61 = �
)
1
5 (25)

Λ<1 = �
)
< �1 (26)

Λ11 = �
)
1
�1 (27)

Λ<< = �
)
< �< (28)

Equation 23 is a quadratic approximation of the objective, which can be analytically minimized

with respect to �< , yielding

�∗< , arg min

�<

2̃1<(G1 , �<) (29)

= −Λ†<<(6<< +Λ<1(G1 � Ğ1)), (30)

where Λ†<< is the pseudoinverse of Λ<< .

Substituting this into 2̃1<(·, ·) yields

2̃1<(G1 , �∗<) =
1

2

(G1 � Ğ1))ΛC(G1 � Ğ1)

+ 6)C (G1 � Ğ1) +
1

2

‖ 5 ‖2, (31)

where

ΛC = Λ11 −Λ1<Λ†<<Λ)1< (32)

6C = 61 −Λ1<Λ†<<6< . (33)

Equation 32 is the Schur complement.
ΛC can be singular, which is problematic for some optimization methods. One way to address

this problem is by computing the eigen-decomposition of ΛC [9]. By the spectral theorem in linear

algebra, ΛC has an orthonormal eigenbasis. Let A be the rank of ΛC and the eigen-decomposition

of ΛC be

ΛC = *�*
) , (34)

Shown in Appendix .1, Equation 31 can be written as the sum of squares:

2̃1<(G1 , �∗<) =
1

2

‖�1/2*)(G1 � Ğ1) + �−1/2*) 6C ‖2. (35)

The eigen-decomposition is relatively expensive and iterative. One can instead compute a

Cholesky factorization with approximately =3/3 floating point operations ΛC = %
)!�!)%, where

5

% is a permutation matrix, ! is unit lower triangular, and � is diagonal. Supposing this yields �

with positive entries on the diagonal, one may represent the marginalization prior cost with the

Cholesky factor (= %)!�1/2
as

2̃1<(G1 , �∗<) =
1

2

‖()(G1 � Ğ1) + (−16C ‖2. (36)

For ill-conditioned systems, the factorization not exist, and if it does, one can obtain � with

nonpositive entries on thediagonal. Depending on thedetails of the factorization, simply clamping

the values of � can correspond to making a large modification to ΛC . One solution is to add a

multiple of identity to ΛC until the factorization yields � > 0 [18]. However, this incurs a large

computational expense and effectively injects a spurious measurement.

Various modified Cholesky algorithms are attractive alternatives [19, 20, 21, 22]. These algo-

rithms have approximately the same computational cost as standard Cholesky factorization, are

explicitly designed to minimize perturbations of the matrix, and avoid restarting factorization.

Our implementation includes various options, which are revisited in section 5.4.

Relating the result to the original objective, one can summarize the steps in eliminating G< as

follows

min

G<
�(G) =�1A(G1 , GA) +min

�<
21<(G1 , �<) (37)

≈�1A(G1 , GA) +min

�<
2̃1<(G1 , �<) (38)

=�1A(G1 , GA)+
1

2

‖()(G1 � Ğ1) + (−16C ‖2. (39)

A geometric view of the cost is shown in Figure 1. The new objective may be re-linearized with

respect to G1 using a new linearization point for G1 and GA , denoted (Ğ′
1
, Ğ′A). We can obtain the

following linearized objective for subsequent optimization:

�′(�1 , �A) = �1A(Ğ′1 � �1 , ĞA � �A)

+1

2

‖()(((Ğ′1 � �1) � Ğ1) + ((
))−16C ‖2. (40)

A graphical view of the cost function for the marginalization prior is shown in Figure 2. This

requires implementing the Jacobian

%

%�1
(Ğ′1 � �1) � Ğ1 . (41)

Fortunately, this Jacobian can be completely encapsulated as an additional manifold operation

along with 1, 2, and the � Jacobian. Correspondingly, our implementation requires that this

Jacobian be implemented in the manifold class used for any variable that appears in the Markov

blanket. We provide common instances with analytical formulas along with a generic alternative

based on automatic differentiation.

3.3 Marginalization via the QR factorization
An algebraically equivalent procedure involves the QR factorization of the Jacobian. We analyze

the procedure in the language of �-manifolds and a present an alternative proof using pseudoin-

6

G1

G2

G3

G0G4

G6

G5 G7

G8G9

G10

(a) Example factor graph with variables to

marginalize G< = (G0), their Markov blanket

G1 = (G1 , G2 , . . . , G6), and remaining variables

GA = (G7 , . . . , G10). Residual functions are rep-

resented as square factor nodes.

G1

G2

G3

G4

G6

G5 G7

G8G9

G10

(b) Factor graph after eliminating G0. The

marginalized variable and all factors that involve

it are replaced with a single factor connected to

the Markov blanket.

Figure 1: Elimination of variables is local in the graph, affecting the variables to marginalize and

ones related to them by residual functions, their Markov blanket.

Figure 2: The cost for the marginalization prior depends on the linearization point Ğ1 at the

time of marginalization. Superimposed above, the cost associated with the marginalization prior

2̃1< is a quadratic function of the deviation of the Markov blanket from Ğ1 (blue). Subsequent

optimizations compute a step in the tangent space �′
1
(red) from future linearization points Ğ′

1
,

which must be mapped to the original tangent space (blue).

7

verse properties. The linearization in Equation 15 can be written compactly as

2̃1<(G1 , �<) =
1

2

∑
8∈%G<

‖ 58(G1 , Ğ< � �<)‖2 (42)

≈ 1

2

‖ 5 +
[
�< �1

] [
�<

G1 � Ğ1

]
‖2. (43)

Here, �1 and �< need not be full-rank. Let A be the rank of �< , so that A ≤ <, and let # be the

dimension of the residual 5 . [11] provide a specialized QR factorization[
�< �1

]
= &', (44)

' =

[
'11 '12

0 '22

]
, (45)

where& is an orthogonal matrix, ' is upper triangular, '11 ∈ RA×< , '22 ∈ R#−A×1 , and '12 ∈ RA×1 .
Define the modified residual

5 ′ , &) 5 =

[
5 ′
1

5 ′
2

]
, (46)

where 51 ∈ RA and 52 ∈ R#−A .
In Appendix .2, we show that the cost for the marginalization prior with �< minimized out is

min

�<
2̃1<(G1 , �<) =

1

2

‖ 5 ′
2
+ '22(G1 � Ğ1)‖2. (47)

The result in Equation 47 is associatedwith a QR factorizationwhere ' = '22 andwith the new

residual 5 ′
2
. Thus, marginalization via QR factorization requires slicing the matrix '. In addition,

[11] proves that the cost is the same as in Equation 31.

4 Additional implementation details

4.1 Generic root-shift operation
In the special cases of pose estimation, it can be advantageous to reparameterize variables prior

to marginalization so that poses are represented in a relative coordinate frame. Generalizing this

so-called “root-shift operation” follows the spirit of this report, so we describe it Appendix .3. We

have observed that choices in root-shift procedures are highly detailed and problem-dependent,

so we include it only in our implementation but not in the numerical experiments to follow.

4.2 Choice of linearization points
There is a distinction made between “local" and “global" linearization points. The former are min-

imizers of Equation 9, and the latter are the minimizers of the original problem in Equation 5. In

[10], Eckenhoff et al. use local linearization points which yield 6C = 0, allowing simplifications of

the cost function for themarginalization prior. When the terms involving 6C are included, superior

results can be obtained with global linearization points [23]. Both works describe advantages to

relative-frame linearization points over global-frame linearization points. An additional consid-

eration is statistical consistency, which can require alternative choices of linearization points for

computing “first-estimates Jacobians" [24, 2, 25]. To support these requirements, our implemen-

tation can make use of user-provided linearization points. In this report, all results use global

linearization points.

8

4.3 Outliers and Robust Loss Functions
Many relevant applications must cope with outlier measurements (e.g. feature reprojections).

This is commonly addressed by augmenting the cost in Equation 5 with robust loss functions. The

modified objective can be written as

�robust(G) =
1

2

∑
8

�8(‖ 58(G81 , . . . , G8:)‖2), (48)

where �8 is a robust loss function, such as theHuber loss. The quadratic approximation in Equation

23 must be modified to account for the high degree of nonlinearity introduced. Gauss-Newton

optimization addresses the same problem in computing quadratic approximations of the objective.

A common approach is described in [26]. Following this approach, the residuals and Jacobians

are weighted before the Schur complement, resulting in a quadratic objective.

4.4 Intra-clique factors
As discussed in [9], intra-clique factors, which are existing terms involving the Markov blanket

variables, may be merged with the marginalization prior. Our implementation offers this option.

4.5 Sparsification
Marginalization results in adenser graphas canbe seen inFigure 1. Previousworkon sparsification

can help address this problem and can be considered complementary to this work [9, 10].

5 Example: GPS/INS with fixed-lag smoothing
To illustrate the convenience of prototyping with our implementation, we demonstrate an im-

plementation in Ceres for an estimator fusing measurements from the global positioning system

(GPS) in an inertial navigation system (INS). The problem formulation and implementation is

intended to be as simple as possible to demonstrate prototyping usage.

A state GC = ('C , ?C , EC , 10C , 1
6

C) is defined at every GPS measurement consisting of a world-

frame rotation 'C ∈ ($(3), translation ?C ∈ R3
, and translational velocity EC ∈ R3

; accelerometer

bias 10C ∈ ℛ3
, and gyroscope bias 1

6

C ∈ R3
. The world-frame is gravity aligned, and the gravity

magnitude is fixed to the ground truth. Our estimator is a fixed-lag smoother with lag parameter

!, which provides estimates of a sliding window of recent states GC−! , GC−!+1, ..., GC conditional on

measurements up to time step C.

5.1 Model and Ceres cost functions
Since the choice of cost functions for the problem is not the focus of this work, we provide a short

summary and refer to our public implementation. The GPS measurements are modeled as

IC = �GC + &C , (49)

where &C is a zero-mean additive Gaussian white-noise process with a scalar covariance at each

time step. For simplicity, the accelerometer is assumed to be coincident with the GPS receiver

9

at time time step C, both having earth-referenced positions as direct state (position) observations

�GC .

Inertial measurement unit (IMU) measurements are incorporated in a simple cost function

based on simple on-manifold zeroth order accelerometer- and gyro-bias-corrected IMU integration

between subsequent states, each state corresponding to one GPS measurement. In addition, a

simple cost function to impose slowly-varying biases is included. Both cost functions only depend

on subsequent states coinciding with GPS measurements. Under the ideal conditions of noiseless

data, perfect states, and the continuous limit, the integration satisfies

'C+1 = 5A(GC) (50)

?C+1 = 5?(GC) (51)

EC+1 = 5E(GC). (52)

To account for errors in integration, we use a simple cost function∑
C

�A ‖ 5A(GC) � 'C+1‖2
2
+ �? ‖ 5?(GC) � ?C+1‖2

2

+ �E ‖ 5E(GC) � EC+1‖2
2

+ �16 ‖16C+1
− 16C ‖

2 + �10 ‖10C+1
− 10C ‖2 (53)

+ �I ‖IC − �GC ‖2, (54)

where the inverse covariances �A ,�? ,�E ,�16 ,�I are scalars.

5.2 Main loop in Ceres
To demonstrate a typical workflow with our implementation, we show only the loop over GPS

measurements used in the GPS/INS example. Given any problem consisting of variables that

implement 41 in addition to the basic operators, only the call to MarginalizeOutVariables is

required to marginalize out an arbitrary set of variables. Under the hood, this call performs a local

search in the graph around the variables to marginalize out, constructs a small problem involving

G1 and G< , runs any of the previous procedures to compute a new cost function involving G1 , and

finally adds a new cost function to the graph.

ce res : : Problem problem ;

vector <Vector > s t a t e s (gpsMeas . s i z e ()) ;

deque<S t a t e∗> problem_states ;

fo r (s i z e _ t t = 0 ; t <gpsMeas . s i z e () ; ++ t) {

// Trans la t ion s t a t e .

problem . AddParameterBlock (s t a t e s [t] . t , 9) ;

// Rotat ion s t a t e .

problem . AddParameterBlock (s t a t e s [t] . R , 9) ;

problem . SetManifold (s t a t e s [t] . R ,

new MarginalizableSO3Manifold ()) ;

// Accel bias , gyro bias , v e l o c i t y s t a t e s .

problem . AddParameterBlock (s t a t e s [t] . vb , 9) ;

problem_states . push_back(& s t a t e s [t]) ;

// Margina l iza t ion fo r lag L .

i f (problem_states . s i z e () > L) {

10

Marginal izeOutVariables (

Marginal izat ionOptions () ,

{ problem_states . f r on t () } ,

&problem) ;

problem_states . pop_front () ;

}

// IMU cos t funct ion

i f (t > 0) {

auto∗ imu_cost =

new ImuErrorCostFunction (

imuParams , imuMeas [t −1] ,
gpsMeas [t −1] . Time ,

gpsMeas [t] . Time) ;

problem . AddResidualBlock (

imu_cost , /∗ l o s s_ func t i on=∗/nul lp t r ,

s t a t e s [t −1] .R , s t a t e s [t −1] . t ,
s t a t e s [t −1] . vb ,

s t a t e s [t] . R , s t a t e s [t] . t ,

s t a t e s [t] . vb) ;

}

// GPS cos t funct ion

auto∗ gps_cost = new GpsCostFunction (

pos_info , gpsMeas [t] . XYZ) ;

problem . AddResidualBlock (

gps_cost , /∗ l o s s_ func t i on∗/nul lp t r ,

s t a t e s [t] . t) ;

// Solve

SolveOptimizationProblem(&problem) ;

// Pred i c t the next s t a t e .

i f (t + 1 < gpsMeas . s i z e ())

{

IntegrateImuMeasurements (

imuMeas [t] , gpsMeas [t] . Time ,

s t a t e s [t] , gpsMeas [t +1] . Time ,

s t a t e s [t + 1]) ;

}

}

5.3 Evaluation with synthetic data
Measurements and ground truth positions were synthesized from a circular trajectory with con-

stant linear velocity and a periodically varying rotation and radius 10 meters. The accelerometer,

gyroscope, and GPS receiver were coincident. Synthetic, noisy accelerometer and gyroscope mea-

surements were synthesized at a synchronized 1 kHz rate with additive Gaussianwhite noise with

standard deviation 0.1 m/sec2
and 0.1 rad/sec along with constant biases of 10

−3(1, 1, 1)m/sec2

and 10
−2(1, 1, 1) rad/sec respectively. Synthetic, noisy GPS measurements were generated as

Gaussian white noise-corrupted versions of the ground truth position with standard deviation 2

11

(a) ! = 2 (b) ! = 10

(c) ! = 20 (d) Translation and rotation error v. !.

Figure 3: Results for GPS/INS with fixed-lag smoothing are shown with various !. Results with

different factorizations had negligible differences.

meters. Cost function parameters were �10 = �16 = 10
5
, �E = 10, �A = 10

4
, �? = 10

2
, �I = 1. 5

Levenberg–Marquardt iterations were used in Ceres with default parameters.

Todemonstrate the ability of our implementation tohandle rank-deficient Jacobians inmarginal-

ization, no priors were used, including any prior on the initial state. A maximum window size

of ! was maintained by marginalizing out the oldest state. Propagation from the latest state was

used to initialize new ones.

Our public Ceres-based implementation offers two alternative implementation options based

on the Schur complement and QR factorization described in Sections 3.2 and 3.3. The Ceres

library and our implementation only support double precision. A detailed comparison of the

two implementations and their numerical properties is outside the scope and well-described in

literature. We compare the results from both here to demonstrate that both handle rank-deficiency

and show nearly identical results in a problems that are otherwise sufficiently well-conditioned.

One can investigate tradeoffs in varying ! and computing the overall accuracy of all smoothed

state estimates GC−! conditional on measurements up to time step C. This accuracy-lag tradeoff is

illustrated in Figure 3.

12

(a) Ground truth trajectory from a synthetic

dataset with sinusoidal portion truncated for

clarity. The body transitions from constant

world-frame translational velocity toperiodic ro-

tation and translation as all states become ob-

servable.

(b) Naive !�!) factorization and failure handling

shows slower recovery due to handling of failures,

while other factorizations show faster recovery. As

states become observable, the condition number

�(ΛC) drops off. The perturbations to ΛC reflected

in ‖ΛC ‖� correspond to the various recovery rates.

5.4 Numerical stability
Section 3.2 described marginalization via the QR factorization and Schur complement. The Schur

complement can be implemented with the eigendecomposition, the !�!) factorization, or a

modified !�!) factorization (permutations omitted for brevity), while the latter two are the least

computationally expensive. We illustrate tradeoffs in numerical accuracy and efficiency observed

in marginalization with these four approaches in an ill-conditioned GPS/INS problem.

In the problem we construct, the state is the same as the one in Section 5.3. All GPS and IMU

data are noiseless synthetic data. GPS and IMU data were sampled at 5Hz and 10kHz. A weak

initial prior on the state was included with inverse covariance 10
−13

. The inverse covariance used

for GPS measurements was 10
9
. For IMU terms, �10 = �16 = 10

9
and �E = �A = �? = 10. A single

Gauss-Newton iteration was used at each time step.

The body initially follows a trajectory with a 100 degree rotation error and constant world-

frame translational velocity and zero angular velocity along a line. Rotation is not observable in

this period. After 10 seconds, it undergoes sinusoidal translation and rotation as shown in Figure

4a, when all states become observable.

Conventional !�!) factorization was considered successful if all diagonal entries of � were

nonnegative. The implementation used pivoting [27]. Failures were handled by re-attempting

factorization ofΛC after adding a multiple of identity as described in [18]. Our modified Cholesky

factorization is from [19], which we refer to as “ModLDLT". For the eigendecomposition, we

retain nonzero eigenvalues. For all methods, Λ−1

< was computed with an !�!) factorization that

succeeded in all attempts.

Figure 4b shows that the rotation error over time for the four methods. For all methods,

translation error was negligible (< 10
−10

meters). After 10 seconds, the rotation error decays,

and the decay is gradual for !�!) . Correspondingly, the condition number computed from the

Jacobian

[
�1 �<

]
when the eigendecomposition is used drops.

13

For such an ill-conditioned problem, !�!) must perturb ΛC by adding a multiple of identity,

effectively injecting a spurious measurement of zero error. As expected, zero-error measurements

slow recovery. Any factorizationused in the Schur complementmake aperturbation ofΛC , denoted

ΔΛC , and their size as measured by ‖ΔΛC ‖� shows that !�!) introduces the largest perturbation.

This corroborates the intuition that spurious information can be injected by a common failure

handling strategy. The modified Cholesky factorization achieves the lowest overall computational

cost and requires smaller perturbations in the worst case.

6 Conclusion
In this report, we presented a generic formulation of marginalization on �-manifolds. We have

described a common framework for various algorithmic choices, which were compared in numer-

ical experiments. Translating these ideas to code, we allow users to marginalize out variables with

a single line of code in Ceres. Practictioners can implement generic sensor fusion algorithms and

experiment with various algorithmic choices in a natural way.

References
[1] Gabe Sibley, LarryMatthies, andGaurav Sukhatme. “A slidingwindowfilter for incremental

SLAM”. In: Unifying perspectives in computational and robot vision (2008), pp. 103–112.

[2] Stefan Leutenegger et al. “Keyframe-based visual–inertial odometry using nonlinear opti-

mization”. In: The International Journal of Robotics Research 34.3 (2015), pp. 314–334.

[3] Jakob Engel, Vladlen Koltun, and Daniel Cremers. “Direct sparse odometry”. In: IEEE trans-
actions on pattern analysis and machine intelligence 40.3 (2017), pp. 611–625.

[4] Vladyslav Usenko et al. “Visual-inertial mapping with non-linear factor recovery”. In: IEEE
Robotics and Automation Letters 5.2 (2019), pp. 422–429.

[5] Tong Qin, Peiliang Li, and Shaojie Shen. “Vins-mono: A robust and versatile monocular

visual-inertial state estimator”. In: IEEE Transactions on Robotics 34.4 (2018), pp. 1004–1020.
[6] Christoph Hertzberg et al. “Integrating generic sensor fusion algorithms with sound state

representations through encapsulation of manifolds”. In: Information Fusion 14.1 (2013),

pp. 57–77.

[7] Tom LKoller andUdo Frese. “The InteractingMultipleModel Filter on Boxplus-Manifolds”.

In: 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Sys-
tems (MFI). IEEE. 2020, pp. 88–93.

[8] Dongjiao He,Wei Xu, and Fu Zhang. “Kalman Filters on Differentiable Manifolds”. In: arXiv
preprint arXiv:2102.03804 (2021).

[9] Nicholas Carlevaris-Bianco, Michael Kaess, and Ryan M Eustice. “Generic node removal for

factor-graph SLAM”. In: IEEE Transactions on Robotics 30.6 (2014), pp. 1371–1385.
[10] Kevin Eckenhoff, Liam Paull, and Guoquan Huang. “Decoupled, consistent node removal

and edge sparsification for graph-based SLAM”. In: 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 3275–3282.

[11] Nikolaus Demmel et al. “Square Root Marginalization for Sliding-Window Bundle Ad-

justment”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 13260–13268.

14

[12] Giorgio Grisetti et al. “g2o: A general framework for (hyper) graph optimization”. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA). 2011, pp. 9–
13.

[13] Sameer Agarwal, Keir Mierle, and The Ceres Solver Team. Ceres Solver. Version 2.1. Mar.

2022. url: https://github.com/ceres-solver/ceres-solver.

[14] Frank Dellaert and Chris Beall. “GTSAM 4.0”. In: URL: https://bitbucket. org/gtborg/gtsam
(2017).

[15] Dehann Fourie et al. “Characterizing marginalization and incremental operations on the

Bayes tree”. In: Algorithmic Foundations of Robotics XIV: Proceedings of the Fourteenth Workshop
on the Algorithmic Foundations of Robotics 14. Springer. 2021, pp. 227–242.

[16] HaykMartiros et al. “SymForce: Symbolic Computation and Code Generation for Robotics”.

In: Proceedings of Robotics: Science and Systems. 2022. doi: 10.15607/RSS.2022.XVIII.041.

[17] Frank Dellaert, Michael Kaess, et al. “Factor graphs for robot perception”. In: Foundations
and Trends® in Robotics 6.1-2 (2017), pp. 1–139.

[18] StephenWright, Jorge Nocedal, et al. “Numerical optimization”. In: Springer Science 35.67-68
(1999), p. 7.

[19] PE Gill, W Murray, and Margaret Wright. Practical optimization. Academic Press, 1981.

[20] Sheung Hun Cheng and Nicholas J Higham. “A modified Cholesky algorithm based on a

symmetric indefinite factorization”. In: SIAM Journal on Matrix Analysis and Applications 19.4
(1998), pp. 1097–1110.

[21] Robert B Schnabel and Elizabeth Eskow. “A revised modified Cholesky factorization algo-

rithm”. In: SIAM Journal on optimization 9.4 (1999), pp. 1135–1148.

[22] Haw-ren Fang and Dianne P O’leary. “Modified Cholesky algorithms: a catalog with new

approaches”. In: Mathematical Programming 115.2 (2008), pp. 319–349.

[23] Daniel Wilbers, Lars Rumberg, and Cyrill Stachniss. “Approximating marginalization with

sparse global priors for sliding window SLAM-graphs”. In: 2019 Third IEEE International
Conference on Robotic Computing (IRC). IEEE. 2019, pp. 25–31.

[24] Guoquan P Huang, Anastasios I Mourikis, and Stergios I Roumeliotis. “A first-estimates

Jacobian EKF for improving SLAM consistency”. In: Experimental Robotics. Springer. 2009,
pp. 373–382.

[25] Joel A Hesch et al. “Observability-constrained vision-aided inertial navigation”. In: Univer-
sity of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab, Tech. Rep 1 (2012), p. 6.

[26] Bill Triggs et al. “Bundle adjustment—a modern synthesis”. In: International workshop on
vision algorithms. Springer. 1999, pp. 298–372.

[27] Gaël Guennebaud, Benoit Jacob, et al. “Eigen”. In: URl: http://eigen. tuxfamily. org 3 (2010).

.1 Marginalization prior cost via the Schur complement
Here, we prove equality of the conversion from the cost in Equation 31 and the sum-of-squares

cost in Equation 35.

15

https://github.com/ceres-solver/ceres-solver
https://doi.org/10.15607/RSS.2022.XVIII.041

Let �1 = G1 � Ğ1 . Substituting Equations 24 - 28 into Equation 31 yields

2̃1<(G1 , �∗<) =
1

2

‖ 5 ‖2 + 5)%�1�1

+ 1

2

�)
1
�)
1
%�1�1 , (55)

where

% = � − �<(�)< �<)−1�)< . (56)

We can see that 2̃1< has the form of a nonlinear least squares cost function. Specifically, there

exists an � with linearly independent columns and 1 such that

2̃1<(G1 , �∗<) =
1

2

�)
1
�)��1 + 1)��1 +

1

2

‖1‖2. (57)

Consider the singular value decomposition

� = *�Σ�+
)
� , (58)

where Σ� contains the nonzero singular values on the diagonal and

*)
�*� = *�*

)
� = � (59)

+)
�+� = � (60)

With access to �)� = +�Σ
2

�
+)
�
, we can compute Σ2

�
and +�. Since 6C = �

)1, we have

2̃1<(G1 , �∗<) =
1

2

�)
1
+�Σ*

)*Σ+)
� �1

+ 6)C +�Σ−1

� Σ�+
)
� �1 +

1

2

6)C +�Σ
−2+)

� 6C (61)

The first terms in Equation 31 and Equation 61 can be shown to match.

1

2

�)
1
+�Σ�*

)*Σ�+
)
� �1 =

1

2

�)
1
+�Σ

2

�+
)
� �1 (62)

=
1

2

�)
1
�)��1 (63)

=
1

2

�)
1
ΛC�1 (64)

To show that the second termmatches, we substitute 6C = �
)1, the SVD for �, and Equation 60

6)C +�Σ
−1

� Σ�+
)
� �1 = 1

)�+�Σ
−1

� Σ�+
)
� �1 (65)

= 1)*�Σ�+
)
�+�Σ

−1

� Σ�+
)
� �1 (66)

= 1)*�Σ�+
)
� �1 (67)

= 1)��1 (68)

= 6)C �1 , (69)

16

To show that the third termmatches, the same substitutions can be used in addition to Equation

59.

1

2

6)C +�Σ
−2

� +
)
� 6C

=
1

2

1)�+�Σ
−2

� +
)
��

)1 (70)

=
1

2

1)*�Σ�+
)
�+�Σ

−2

� +
)
�+�Σ�*

)
�1 (71)

=
1

2

1)*�Σ�Σ
−2

� Σ�*
)
�1 (72)

=
1

2

1)*�*
)
�1 (73)

=
1

2

‖1‖2 (74)

.2 Marginalization prior cost via QR factorization
Substituting Equations 44 and 46 into Equation 43, we obtain

2̃1<(G1 , �<) =
1

2

‖ 5 +&'
[

�<
(G1 � Ğ1)

]
‖2 (75)

=
1

2

‖&) 5 +
[
'11 '12

0 '22

] [
�<

(G1 � Ğ1)

]
‖2 (76)

=
1

2

‖&) 5 +
[
'11

0

]
�< +

[
'12

'22

]
(G1 � Ğ1)‖2 (77)

=
1

2

‖&) 5 +
[
'11

0

]
�< +

[
'12

'22

]
(G1 � Ğ1)‖2 (78)

The pseudoinverse provides a solution for �< that minimizes 2̃1< .

�∗< = arg min

�<

2̃1<(G1 , �<) (79)

= −'†
11
(5 ′

1
+ '12(G1 � Ğ1)). (80)

Substituting this into Equation 78 and some rearrangement yields

2̃1<(G1 , �∗<) =
1

2

‖
[
5 ′
1

5 ′
2

]
−

[
'11'

†
11
(5 ′

1
+ '12(G1 � Ğ1))

0

]
+

[
'12

'22

]
(G1 � Ğ1)‖2 (81)

=
1

2

‖
[
5 ′
1

5 ′
2

]
−

[
5 ′
1
+ '12(G1 � Ğ1)

0

]
+

[
'12

'22

]
(G1 � Ğ1)‖2 (82)

=
1

2

‖
[

0

5 ′
2

]
+

[
0

'22

]
(G1 � Ğ1)‖2 (83)

=
1

2

‖ 5 ′
2
+ '22(G1 � Ğ1)‖2. (84)

17

In Equation 82, we used the fact that '11 is has linearly independent rows, so '†
11
satisfies '11'

†
11
=

�.

.3 Generic root-shift operation
Consider the case where all variables are poses belonging to a group �. Let GF: ∈ � be the

original global-frame representation for node : in the elimination clique. There is freedom in

choosing the coordinate system on which they are based. As discussed in related work, the global

coordinate frame can be a poor choice because a stable global-frame linearization point may not

exist [9, 10]. Thus, prior to marginalization, it can be advantageous to reparameterize any poses

expressed in the global frame in a local and stable coordinate frame. We provide an alternative

generic description of the procedure described in previous work.

Choosing node 1 as the node defining the new local coordinate system, the reparameterized

variables are defined as
GF1

G12

G13

...

 , A(

GF1

GF2

GF3

...

) =

GF1

G−1

F1
◦ GF2

G−1

F1
◦ GF3

...

 (85)

Consider a residual term in the elimination clique 5 , which may already be a function of GF:
for all : ≥ 1. As part of this operation, 5 is replaced with the residual

5 ′(GF1, G12, G13, . . .) , 5 (GF1, GF1 ◦ G12, GF1 ◦ G13, . . .) (86)

Applying the chain rule, the derivatives of 5 ′with respect to the reparameterized variables are

% 5 ′

%GF1

=
% 5

%GF1

+
∑
:≥2

% 5

%GF:

%

%GF1

(GF1 ◦ G1:) (87)

% 5 ′

%G1:
=

% 5

%GF:

%

%G1:
(GF1 ◦ G1:) (88)

The result expression shows that the derivatives of the new residual are functions of the

derivatives of the original residual and the derivatives of the composition operator for the group

�. Thus, one can implement the modified residual without knowing any additional information

about the original residual. The only group properties that must be implemented to perform this

step are only the composition operators, their derivatives, and composition with the inverse of

GF1.

18

	Introduction
	Preliminaries
	-manifolds
	Nonlinear least squares on manifolds

	Generic Marginalization
	General setup
	Marginalization via the Schur complement
	Marginalization via the QR factorization

	Additional implementation details
	Generic root-shift operation
	Choice of linearization points
	Outliers and Robust Loss Functions
	Intra-clique factors
	Sparsification

	Example: GPS/INS with fixed-lag smoothing
	Model and Ceres cost functions
	Main loop in Ceres
	Evaluation with synthetic data
	Numerical stability

	Conclusion
	Marginalization prior cost via the Schur complement
	Marginalization prior cost via QR factorization
	Generic root-shift operation

